Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → ADD(sqr(X), dbl(X))
ADD(s(X), Y) → ADD(X, Y)
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
TERMS(N) → SQR(N)
DBL(s(X)) → DBL(X)
HALF(s(s(X))) → HALF(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → ADD(sqr(X), dbl(X))
ADD(s(X), Y) → ADD(X, Y)
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
TERMS(N) → SQR(N)
DBL(s(X)) → DBL(X)
HALF(s(s(X))) → HALF(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → ADD(sqr(X), dbl(X))
ADD(s(X), Y) → ADD(X, Y)
SQR(s(X)) → SQR(X)
TERMS(N) → SQR(N)
SQR(s(X)) → DBL(X)
DBL(s(X)) → DBL(X)
HALF(s(s(X))) → HALF(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(X))) → HALF(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HALF(s(s(X))) → HALF(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
HALF(x1)  =  HALF(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
[HALF1, s1]

Status:
HALF1: [1]
s1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
s1 > ADD1

Status:
s1: [1]
ADD1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL(s(X)) → DBL(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DBL(s(X)) → DBL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DBL(x1)  =  DBL(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
[DBL1, s1]

Status:
s1: [1]
DBL1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → SQR(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SQR(s(X)) → SQR(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SQR(x1)  =  SQR(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Quasi-Precedence:
[SQR1, s1]

Status:
SQR1: [1]
s1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.